

Fully automated algorithm for lidar PBL height detection at ICOS-atmospheric stations: STRAT+ improvements and application

Bravo-Aranda, J.A.; Haeffelin, M. and Pietras, C.

Institut Pierre-Simon Laplace, CNRS-Ecole Polytechnique, France

TOPROF, CEILINEX WORKSHOP, Münich, 8 October 2015

Outline

1. Introduction

- 2. STRAT+: fully automated algorithm for PBL height detection
- 3. STRAT+ performance analysis:
 - 1. radiosonde Vs ALC
 - 2. ALC Vs ALC
 - 3. Overlap influence
- 4. To-do list

Introduction

- Boundary layer height (BLH) is the first-order control on the relationship between surface-atmosphere trace gas fluxes
- A correct representation of BLH in a tracer **transport model** is of key importance for interpreting ground-based mixing ratio measurements.
- To this aim, lidar measurements are part of the ICOS level-1 stations

ICOS-inwire

New standardized, fully automated algorithm for lidar characterization of PBL vertical structure at ICOS-atmospheric stations

As a step to the operational implementation of the PBL height retrieval, STRAT+ algorithm (already implemented on lidars, *Pal et al. 2013*) is been improved for ceilometers

STRAT+ method

STRAT+ based on two modules has been successfully applied to lidar systems by Pal et al. 2013:

- Module 1 (STRAT; Morille et al. 2007; Haeffelin et al. 2012): 2Dedge detection. It provides up to five 10-min MH candidates
- Module 2 (Variance method):
 - noise removing using an spectral filter. It provides 1-hour variance MH (MH reference)
 - Anemometer data is used to determine the 'day-' and 'night-time' in terms of atmospheric stability
- Final attribution: comparison between the candidates and the MH reference

- Edge detection is mainly based on Gaussian smooth and Canny's method (gradient in several directions)
- From 3+1 to 5+1 PBL candidates (4 stronger and lowest edges and cloud base height)

- Step 1: 1-hour variance profile is used to determine the MLD
- Step 2: the 1-hour MLD is splined into 10-min resolution
- Step 3: Nearest 10-min PBL candidate to the 10-min variance MLD reference is choose as final MLD

Module 2 (Variance method): Variance PBL reference and final attribution

STRAT+ performance analysis

STRAT+ performance analysis:

- PBL height reference (from radiosonde measurements)
- Different locations and large period: Palaiseau (France), Granada (Spain), Payerne (Switzerland), Humain (Belgium), Brno (Czech Republic)
- Different collocated ceilometer types: Jenoptiks, Vaisala and Campbell Scientific (and their different versions)

CEILINEX campaign allows the comparison of different collocated ceilometers with radiosondes (4/day)

CEILINEX ceilometers and lidar

Instrument name	Instrument ID	Instrument type	Institution
CHM140101	140101	CHM 15k Nimbus	MOL-RAO
CHX080082	080082	CHX 15k Nimbus	MOL-RAO
CL51RAO	124350003	<u>CL51</u>	MOL-RAO
CL31RAO	124350004	<u>CL31</u>	MOL-RAO
LD40_002	002	LD40	MOL-RAO
CHXLMU	090103	CHX 15k Nimbus	<u>LMU</u>
CL51CG	141530001	<u>CL51</u>	<u>CG</u>
CS2	167484	<u>CS135</u>	<u>CS</u>
RALPH		<u>PollyXT</u>	<u>MOHP</u>
CS1	167483	<u>CS135</u>	<u>CS</u>
CL31RUB	134550001	<u>CL31</u>	<u>RUB</u>
CHM100110	100110	CHM 15k Nimbus	MOL-RAO
LD40_003	003	LD40	MOL-RAO

- ✓ Ceilometers: 12!!!
- 🗸 1 lidar
- ✓ Radiosondes: 4/day!!!
- Meteo and sonic data (coming soon)

CEILINEX ceilometers and lidar

Module 1 (STRAT): 5 PBL candidates (4 stronger edges and cloud base height) 8

Radiosonde (parcel method)

- Parcel method strongly depends on the surface temperature
- Radiosonde MLD (rs-MLD) has been determined at surface temperature (Ts) and Ts±0.5°C
- Richardson number will be used ⁴/₄

Midday RS-ALC comparison

 ALC MLD height is compared with the nearest rs-MLD determined by Ts, Ts-0.5°C and Ts+0.5°C.

 rs-ALC MLD differences are lower than 500 m in more than 50%

no-filtered CEILINEX database (e.g., rain, very low clouds, ...)

 Despiking filters are under investigation for improving the variance method retrieval

10

ALC-ALC analysis

 CHM100110 and CHM140101 show similar results

Overlap-affected detection –
(Yan's method for overlap correction!)

LD40_002 and LD40_003

generally provide low PBL height

m agl t+1 line 250 r CHM140101 MLD, 3000 2000 1000 2000 3000 CHM100110 MLD, m agl CHM100110 Vs CL31RAO m agl 1:1 line $\pm 250 \, n$ MLD 200 CL31RA 1000 2000 3000 0 CHM100110 MLD, m agl CHM100110 Vs LD40_02 LD40_02 MLD, m agl 1:1 line $\pm 250 \, n$ 2000 1000 2000 3000 0 CHM100110 MLD, m agl

CHM100110 Vs CHM140101

Overlap influence on Jenoptik ceilometers

 Improvement of the edge detection (PBL candidates) due to overlap correction (specially during night-time)

To-do list

- Meteorological and anemometer sonic data

- Reprocess STRAT+
- Night- and day-time PBL height from radiosondes (Richardson number method)
- Despiking improvement
- Analyze the PBL detection after the overlap correction (application of Yan's method)

Manuscript title: -

Author list (to be discussed) : Bravo-Aranda J.A., Haeffelin M., Pietras C., Tarniewicz J., Pal S., 'long-term database station co-author list' and 'CEILINEX's co-author list'. **Topics**:

- STRAT+ improvements:
- RS Vs ALC: <u>CEILINEX data</u>
- Spatial intercomparison: Granada, Payerne, Lindenberg, Humain, Brno?
- STRAT+ on different ceilometer types and models: <u>CEILINEX data</u>

Thank you for your attention!

See you in the CEILI**NEXT** meeting!